Genome Editing Using Mammalian Haploid Cells
نویسندگان
چکیده
منابع مشابه
Genome Editing Using Mammalian Haploid Cells
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For exampl...
متن کاملRNA-guided genome editing of mammalian cells.
The microbial CRISPR-Cas adaptive immune system can be harnessed to facilitate genome editing in eukaryotic cells (Cong L et al., Science 339, 819-823, 2013; Mali P et al., Science 339, 823-826, 2013). Here we describe a protocol for the use of the RNA-guided Cas9 nuclease from the Streptococcus pyogenes type II CRISPR system to achieve specific, scalable, and cost-efficient genome editing in m...
متن کاملGenome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system
Haploid embryonic stem cells (ESCs) are useful for studying mammalian genes because disruption of only one allele can cause loss-of-function phenotypes. Here, we report the use of haploid ESCs and the CRISPR RNA-guided Cas9 nuclease gene-targeting system to manipulate mammalian genes. Co-transfection of haploid ESCs with vectors expressing Cas9 nuclease and single-guide RNAs (sgRNAs) targeting ...
متن کاملEditing DNA Methylation in the Mammalian Genome
Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression networks in many biological processes. However, investigation of the functions of specific methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the dCas9-Tet1 or -Dnmt3a ...
متن کاملCombinatorial gene editing in mammalian cells using ssODNs and TALENs
The regulation of gene editing is being elucidated in mammalian cells and its potential as well as its limitations are becoming evident. ssODNs carry out gene editing by annealing to their complimentary sequence at the target site and acting as primers for replication fork extension. To effect a genetic change, a large amount of ssODN molecules must be introduced into cells and as such induce a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2015
ISSN: 1422-0067
DOI: 10.3390/ijms161023604